Saturday, October 12, 2013
Information Theory, Inference and Learning Algorithms
Information Theory, Inference and Learning Algorithms |
Information Theory, Inference and Learning Algorithms Posted: I find it interesting that most of the people reviewing this book seem to be reviewing it as they would any other information theory textbook. Such a review, whether positive or critical, could not hope to give a complete picture of what this text actually is. There are many books on information theory, but what makes this book unique (and in my opinion what makes it so outstanding) is the way it integrates information theory with statistical inference. The book covers topics including coding theory, Bayesian inference, and neural networks, but it treats them all as different pieces of a unified puzzle, focusing more on the connections between these areas, and the philosophical implications of these connections, and less on delving into depth in one area or another. This is a learning text, clearly meant to be read and understood. The presentation of topics is greatly expanded and includes much discussion, and although the book is dense, it is rarely concise. The exercises are absolutely essential to understanding the text. Although the author has made some effort to make certain chapters or topics independent, I think that this is one book for which it is best to more or less work straight through. For this reason and others, this book does not make a very good reference: occasionally nonstandard notation or terminology is used. The biggest strength of this text, in my opinion, is on a philosophical level. It is my opinion, and in my opinion it is a great shame, that the vast majority of statistical theory and practice is highly arbitrary. This book will provide some tools to (at least in some cases) anchor your thinking to something less arbitrary. It's ironic that much of this is done within the Bayesian paradigm, something often viewed (and criticized) as being more arbitrary, not less so. But MacKay's way of thinking is highly compelling. This is a book that will not just teach you subjects and techniques, but will shape the way you think. It is one of the rare books that is able to teach how, why, and when certain techniques are applicable. It prepares one to "think outside the box". I would recommend this book to anyone studying any of the topics covered by this book, including information theory, coding theory, statistical inference, or neural networks. This book is especially indispensable to a statistician, as there is no other book that I have found that covers information theory with an eye towards its application in statistical inference so well. This book is outstanding for self-study; it would also make a good textbook for a course, provided the course followed the development of the textbook very closely. |
You are subscribed to email updates from Shield To stop receiving these emails, you may unsubscribe now. | Email delivery powered by Google |
Google Inc., 20 West Kinzie, Chicago IL USA 60610 |
Subscribe to:
Post Comments (Atom)
0 comments:
Post a Comment